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[1] Commonly, a soil’s relative permeability curve is predicted from its measured water
retention curve by fitting equations that share parameters between the two curves (e.g.,
Brooks/Corey-Mualem and van Genuchten-Mualem). We present a new approach to
predict relative permeability by direct application of measured soil water retention data
without any fitting procedures. The new relative permeability model, derived from a
probabilistic fractal approach, appears in series form as a function of suction and the
incremental change in water content. This discrete approach describes the drained pore
space and permeability at different suctions incorporating the effects of both pore size
distribution and connectivity among water-filled pores. We compared the new model
performance predicting relative permeability to that of the van Genuchten-Mualem
(VG-M) model for 35 paired data sets from the Unsaturated Soil hydraulic Database
(UNSODA) and five other previously published data sets. At the 5% level of significance,
the new method predicts relative permeabilities from the UNSODA database significantly
better (mean logarithmic root-mean-square error, LRMSE = 0.813) than the VG-M
model (LRMSE = 1.555). Each prediction of relative permeability from the five other
previously published data sets was also significantly better.
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1. Introduction

[2] Knowledge of a soil’s unsaturated hydraulic conduc-
tivity or relative permeability is critical for describing the
flow of fluids and solutes in the vadose zone. Solution of
the partial differential equations governing flow under vari-
ably saturated conditions requires appropriate constitutive
relationships among permeability, saturation, and capillary
pressure.
[3] Because measurement of relative permeability is dif-

ficult, attempts to predict this function from measurements
of water retention have proliferated. Most attempts rely on,
more or less, an empirical or fractal description of the drain-
age process combined with Burdine’s [1953] or Mualem’s
[1976] integral equations to develop a relative permeability
function that shares parameters with the water retention func-
tion [e.g., Brooks and Corey, 1964; van Genuchten, 1980;
Tyler and Wheatcraft, 1990; Fuentes et al., 1996; Xu and
Dong, 2004]. Sharing parameters between the water retention
and relative permeability functions allows the prediction of
one function if the other is known but only through the use
of and the assumptions that go along with the Burdine and
Mualem models. Oversimplified representation of pore

space geometry as a bundle of capillary tubes may result in
discrepancies when comparing predictions from these mod-
els with the results of experimental data [Fischer and Celia,
1999; Tuller and Or, 2002].
[4] Pore network modeling is an alternative approach to

predict relative permeability from measured water retention
data [Fischer and Celia, 1999; Vogel and Roth, 2001;Metzger
et al., 2007]. It involves optimization of bond and site size
distributions in artificially generated lattices. However, non-
unique solutions are easily obtained since various configu-
rations of the pore size distribution and interconnectivity can
match those predicted by the measured water retention data
[Vogel and Roth, 2001].
[5] Fractals are iterative geometrical models for describ-

ing irregular and fragmented systems. Fractal geometry has
been widely applied to derive physically based expressions
for soil hydraulic functions [e.g., Giménez et al., 1997; Bird
et al., 2000; Wang et al., 2005]. Most fractal models, how-
ever, do not include an explicit description of incomplete
pore connectivity, which can result in partial drainage of
pores as suction is increased. Thus, estimates of physically
based parameters, such as the mass fractal dimension,
obtained by fitting these models to experimental water
retention data, may not be accurate. Because of incom-
plete drainage the resulting parameters might better be
described as apparent values.
[6] During drainage of a random porous medium, both

the pore size distribution and the connectivity of pores de-
termine the drained pore volume as function of suction.
Cihan et al. [2007] presented a probabilistic fractal approach
to describe a drained pore space that explicitly incorporates
the effect of connectivity among pores with different sizes
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and allows continuing drainage of pores at different suctions.
In this study, we present a discrete version of their water
retention model and use it to derive a new expression for the
relative permeability function. This approach allows predic-
tion of the relative permeability directly frommeasured water
retention data. Model fitting or parameters are not required.
We tested the performance of the new relative permeability
expression using soil hydraulic data from the Unsaturated
Soil Hydraulic Database (UNSODA) [Leij et al., 1996] and
other highly cited data sets collected from the literature.

2. Theory

2.1. Water Retention Function

[7] Cihan et al. [2007] introduced a framework to quan-
titatively describe incomplete drainage and the water reten-
tion function during drying of a random mass prefractal
porous medium. Their conceptual model assumes that as
drying occurs, not all pores of a given size drain at the
appropriate suction because of incomplete pore connec-
tivity. The number of solids, Ns, of length r in the mass
prefractal porous medium is given by

Ns rð Þ ¼ bi
� �D

; ð1Þ

where i is the iteration level, b is the scale factor defined
as the ratio of solid sizes at two successive iteration levels
(ri/ri+1), and D is the mass fractal dimension defined as
log [Ns(r)/Ns(br)]/log b. The number of pores, Np, of
length r can be expressed as

Np rð Þ ¼ bE � bD
� �

b i�1ð ÞD; ð2Þ

where E is the Euclidean dimension. Depending upon the
lacunarity of the prefractal porous medium, pores of length
r0/b (where r0 is the characteristic length of the porous
medium) that do not drain at the appropriate suction may
remain full or drain into pores of length r0/b

2, r0/b
3 . . ., r0/b

i

as the suction, h ! 1. Cihan et al. [2007] proposed an
approach to model this complex drainage process. Figure 1
shows a conceptual representation of their approach for a
2-D random mass prefractal porous medium, or randomized
Sierpinski carpet, with a unit length, b = 4, D = log10/log4ffi
1.660 and n (last iteration level of the porous medium) = 2.
An initially saturated porousmedium (j = 0, Figure 1a) begins
to drain by applying suction. A no-flow boundary is present
on the left- and right- sides, and all drained pores are assumed
to retain a water film of negligible volume. Six large pores
with a length of 1/4 are present. At the first drainage step
(j = 1), five of the six large pores that are connected from top
to bottom, drain as shown in white in Figure 1b. The large
nondraining pore at the bottom left side is connected with
smaller pores of length of 1/16 and only drains at the next
suction level (j = 2, Figure 1c). Nine of the sixty 1/16-sized
pores are disconnected and remain water filled at the end of
this drying cycle (Figure 1c).
[8] Generalization of the above procedures to a porous

medium with arbitrary fractal dimension and scale factor
can be accomplished as follows. At drainage level 1, which
corresponds to the air entry value or minimum capillary pres-
sure, a P1 fraction of the r1( = r0/b) pores drains. This drained
fraction can be expressed as P1Np

(1)/bE, where Np
(1)/bE is the

proportion of the largest pores within the entire volume. At
drainage level 2, a P2 fraction of the r2(= r0/b

2) pores and
water-filled r1 pores drains. The total volume fraction of
water draining at j = 2 can be expressed by P2[Np

(2)/b2E + (1�
P1)Np

(1)/bE]. Cumulatively, after two drainage steps the vol-
umetric fraction of water remaining in the r0/b- and r0/b

2-
sized pores is given by

N 2ð Þ
p

b2E
þ 1� P1ð Þ

N 1ð Þ
p

bE

" #
� P2

N 2ð Þ
p

b2E
þ 1� P1ð Þ

N 1ð Þ
p

bE

" #

¼ 1� P2ð Þ
N 2ð Þ
p

b2E
þ 1� P2ð Þ 1� P1ð Þ

N 1ð Þ
p

bE
:

Figure 1. Idealized realization of a 2-D drying random
prefractal porous medium with b = 4, the last iteration level,
n = 2 and D ffi 1.660 (black is solid, white is air-filled pore,
blue is water-filled pore, and 0 	 j 	 n is the drainage level.
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The proportion of water draining from the connected pores
between any two successive drainage levels can be general-
ized as

j ¼ 1 q0 � q1 ¼ P1

N 1ð Þ
p

bE
;

j ¼ 2 q1 � q2 ¼ P2

N 2ð Þ
p

b2E
þ 1� P1ð Þ

N 1ð Þ
p

bE

" #
;

j ¼ 3 q2 � q3 ¼ P3

N 3ð Þ
p

b3E
þ 1� P2ð Þ

N 2ð Þ
p

b2E

"

þ 1� P2ð Þ 1� P1ð Þ
N 1ð Þ
p

bE

#
;

..

. ..
.

j qj�1 � qj ¼ Pj

N jð Þ
p

bjE
þ 1� Pj�1

� � N j�1ð Þ
p

b j�1ð ÞE

"

þ 
 
 
 þ 1� Pj�1

� �
1� Pj�2

� �
. . . 1� P1ð Þ

N 1ð Þ
p

bE

#
; ð3Þ

where q1, q2, q3, . . .1 are the volumetric water contents
corresponding to the suction levels j = 1,2,3,. . .1, q0 is the
saturated water content, and Pj is the probability of drainage
of the remaining pore volume at any j or any corresponding
suction. Summation of all terms in equation (3) gives the
cumulative drained water content, qd, at any j or any cor-
responding capillary pressure, which is expressed in sym-
bolic form as

qd jð Þ ¼
Xj

i¼1

Xj

m¼i

N ið Þ
p

biE
Pm

Ym�1

k¼i

1� Pkð Þ
" #( )

; ð4Þ

wherePa
b ( ) = 1,Sa

b ( ) = 0 for a > b. Then, if the water content
at the jth suction level is defined by

qj ¼ q0 � qd jð Þ; ð5Þ

the saturated water content or porosity can be obtained
by summing the volume fractions of all pore sizes as q0 =
Si =1
n Np(i)/biE. The drained water content at the first level of

drainage j = 1 is given by qd(1) = P1Np
(1)/bE. Subtracting

qd(1) from q0, we obtain the water content at the first
level of drainage, i.e., q1 = q0 � qd (1) = (1 � P1)Np

(1)/bE +
Si=2
n Np

(i)/biE. The general symbolic expression for the water
content at any drainage level j can be expressed as

qj ¼
Xj

i¼1

N ið Þ
p

biE

Yj
k¼i

1� Pkð Þ
" #

þ
Xn
i¼jþ1

N ið Þ
p

biE
: ð6Þ

Invoking the Young-Laplace expression [de Gennes et al.,
2004], the term bi in equation (6) can be replaced with the
normalized capillary pressure, h/hmin. The P values con-
tain information about the connectivity of the pore system
and are independent of any assumed fractal morphology for

the porous medium. Rearranging equation (3) for P yields
[Cihan et al., 2007]

Pj ¼
qj�1 � qjXj

i¼1

N ið Þ
p

biE

Yj�1

k¼i

1� Pkð Þ
: ð7Þ

The individual P1, P2, . . ., P values in equation (7) can be
estimated inversely from the water retention curve if b and D
values are known a priori for a fractal porous medium [Cihan
et al., 2007].

2.2. Relative Permeability: Probabilistic Capillary
Connectivity Model

[9] Neglecting inertial effects, the mean velocity of a fluid,
u, in a narrow tube of radius, rt, is given by Poiseuille’s
equation, i.e.,

u ¼ �Cr2t rg
m

dh

dl
; ð8Þ

where C is a shape factor, m is the dynamic viscosity, r is
the density, g is the gravitational acceleration, and dh/dl is the
potential gradient driving the fluid flow in the tube. If the
porous medium is considered to be made up of channels of
different sizes, Poiseuille’s equation approaches Darcy’s law,
which expresses the mean velocity of a fluid in a porous
medium and can be written as

q ¼ � krg
m

dh

dl
; ð9Þ

where k is equivalent to hCrt2i, an averaged quantity for the
porous medium. The shape factor C, changes depending on
the geometry of the pore.
[10] Cihan et al. [2009] first proposed the ‘‘probabilistic

capillary connectivity model’’ (PCC) to describe the perme-
ability of saturated porous media. Their approach separates
the system into multiple connected flow paths or networks.
We employ this same methodology to formulate the relative
permeability function. Consider an initially saturated net-
work consisting of only the largest pores of size r0/b con-
nected from one end to the other in the direction of flow.
Following Poiseuille’s equation, the mean velocity of water
following such a pathway is proportional to r0

2/b2. At level 1
of the drainage process, the permeability decreases when the
connected proportion of the largest pores of size r0/b drain.
The probability for the existence of such draining pores is
provided in equation (3) (i.e., P1Np

(1)/bE). The remaining
proportion of water in pores of size r0/b is given by (1 �
P1)Np

(1)/bE; these pores fail to drain because they are uncon-
nected or connected with smaller pores of size r0/b

2. There
might also be a network formed only of r0/b

2-sized pores.
The probability for the existence of a network containing r0/
b2-sized pores or r0/b- and r0/b

2-sized pores is written as
P2(Np

(2)/b2E + (1 � P1)Np
(1)/bE), where P2, as defined previ-

ously, represents the connected proportion of water-filled
pores in networks formed by r0/b

2- or larger-sized pores,
which will drain at level 2. Since flow rate is controlled by
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the smallest pores within a serial network of pores, the mean
velocity of water flowing along a pathway consisting of
r0/b- and r0/b

2-sized pores is assumed to be proportional to
the cross-sectional area of the smaller pores (i.e., r0/b

2).
[11] In generalized form, the pore areas controlling flow

in the different flow paths, multiplied by their associated
probabilities, can be written as

j ¼ 1 P1

N ð1Þ
p

bE
r20
b2

;

j ¼ 2 P2

N 2ð Þ
p

b2E
þ 1� P1ð Þ

N 1ð Þ
p

bE

" #
r20
b4

;

j ¼ 3 P3

N 3ð Þ
p

b3E
þ 1� P2ð Þ

N 2ð Þ
p

b2E
þ 1� P2ð Þ 1� P1ð Þ

N 1ð Þ
p

bE

" #
r20
b6

;

..

. ..
.

j ¼ n Pn

N nð Þ
p

bnE
þ ð1� Pn�1Þ

N n�1ð Þ
p

b n�1ð ÞE

"

þ 
 
 
 þ 1� Pn�1ð Þ 1� Pn�2ð Þ . . . 1� P1ð Þ
N 1ð Þ
p

bE

#
r20
b2n

:

ð10Þ

The intrinsic permeability is defined by the expected value,
hCrt2i i.e., the summation of all the terms above leading to
[Cihan et al., 2009]

k ¼ Cr20

Xn
i¼1

Xn
m¼i

N ið Þ
p

biE
Pm

b2m

Ym�1

k¼i

1� Pkð Þ
" #( )

; ð11Þ

where n is the last iteration level of the fractal porous medium
and the pore shape factor C is assumed to be constant for all
pores. Assuming that drainage occurs from the largest pores
to the smallest pores sequentially, the permeability of the

draining random mass prefractal porous medium can be
expressed as

kw jð Þ ¼ k � Cr20

Xj

i¼1

Xj

m¼i

N ið Þ
p

biE
Pm

b2m

Ym�1

k¼i

1� Pkð Þ
" #( )

; ð12Þ

where 1 	 j 	 n is the jth drainage step or suction level.
Comparing equation (10) with equation (3), we can rewrite
equation (12) as

kw jð Þ ¼ k � C
Xj

i¼1

Dqi
r20
b2i

; ð13Þ

whereDqi = qi�1 � qi. Since relative permeability is defined
by krw = kw/k, equation (13) can be modified to

krw jð Þ ¼ 1�

Pj
i¼1

Dqi=b2i

Pn
i¼1

Dqi=b2i
: ð14Þ

When j is equal to n, krw is equal to zero. By applying the
Young-Laplace expression, bi = h/hmin [de Gennes et al.,
2004], equation (14) can be expressed in terms of the suction
h, giving

krw jð Þ ¼ 1�

Pj
i¼1

Dqi=h2i

Pn
i¼1

Dqi=h2i

: ð15Þ

Equation (15) enables the relative permeability to be
predicted directly from the measured data pairs in a water

Figure 2. Discrete PCC and VG-M relative permeability predictions for all 40 data sets.
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retention curve without the need for any model fitting.
Because of the discrete nature of the PCC model it may be
quite efficient for numerically solving inverse unsaturated
flow and transport problems. However, interpolation between
calculated krw values will require some form of prediction
between measured points in the water retention curve.
[12] The current model presented in this paper applies to

monotonic drainage only. Thus, water retention data that are
to be used to compute relative permeability should represent
amonotonically decreasing function. In general, duringwater
retention tests, as suction is incrementally increased,
corresponding water content values are recorded. The num-
ber of paired water content–suction points obtained during a
drainage test may vary according to soil texture, experimental
method and equipment used, time available for data collec-
tion, etc. Errors associated with discretization can be mini-
mized by choosing small increments.

[13] Natural porous media are often assumed to be
composed of continuously distributed pore sizes. For this
case, equation (13) can be approximated as

kw ¼ k � C

Zrmax

r

q0 sð Þs2ds; ð16Þ

where s is a dummy variable for r and the relative perme-
ability is given by

krw ¼ 1�

R1
hmin=h

q0 r*ð Þr*2dr*

R1
hmin=hmax

q0 r*ð Þr*2dr*
; r* ¼ r

rmax

¼ hmin

h
; ð17Þ

Figure 4. Discrete PCC and VG-M relative permeability predictions for Guelph loam.

Figure 3. Discrete PCC and VG-M relative permeability predictions for Yolo light clay.
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where rmax is the largest pore size and hmax is the highest
suction that drains the smallest pores present under the
influence of capillary forces. Equation (17) was derived
by assuming a continuous pore size distribution and has
a form similar to the models of Purcell [1949] and Burdine
[1953].
[14] In this study, we will concentrate on evaluating the

discrete function given by equation (15) since its applica-
tion does not require any fitting procedure and, unlike
equation (17), it does not require a priori knowledge of the
minimum suction (hmin). We will test equation (15) against
the commonly applied van Genuchten-Mualem (VG-M)
[van Genuchten, 1980] approach using the UNSODA
database [Leij et al., 1996] and other previously published

measurements of the water retention and relative perme-
ability curves.

3. Data Sets and Model Testing

[15] UNSODA is one of the largest soil hydraulic data
sets that includes suction–water content–relative permeabil-
ity data for a wide range of soils from clay to gravel. Within
UNSODA only 35 data sets are paired; that is, the water
content and relative permeability measurements were col-
lected at the same capillary pressures. We restricted our com-
parison to these paired data because we have not, as of yet,
established a viable method to estimate the relative perme-
ability at suctions between those included in the actual
measurements. Another five paired data sets were located

Figure 6. Discrete PCC and VG-M relative permeability predictions for Berea sandstone.

Figure 5. Discrete PCC and VG-M relative permeability predictions for Superstition sand.
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in the literature for more detailed analysis, including: Yolo
light clay [Moore, 1939], Guelph loam [Elrick and
Bowman, 1964], Superstition sand [Richards, 1953],
Hygiene sandstone [Brooks and Corey, 1964], and Berea
sandstone [Brooks and Corey, 1964]. The Yolo light clay
and Guelph loam data sets also appear in the UNSODA
database. These five data sets are well documented and
have been extensively investigated [van Genuchten, 1980;
Fredlund et al., 1994].
[16] Predictions of equation (15) were compared with the

popular empirical VG-M [van Genuchten, 1980] relative per-
meability function. The van Genuchten water retention and
VG-M relative permeability are expressed as functions of
suction in the following equations:

S ¼ Sr þ 1� Srð Þ 1þ ahð Þn½ ��m
; m ¼ 1� 1=n; ð18Þ

krw hð Þ ¼
1� ahð Þn�1

1þ ahð Þn½ ��m
n o2

1þ ahð Þn½ �m=2
; m ¼ 1� 1=n; ð19Þ

where S is the saturation and Sr is the residual saturation.
VG-M model parameters (a, n, and Sr) were obtained by
fitting equation (18) to the measured water retention data
sets using nonlinear regression (Marquardt method) as
implemented by SAS Institute [1999] (SAS). All of the fits
converged according to the SAS default convergence
criterion [SAS Institute, 1999]. The average coefficient of
determination (R2) between the measured and predicted
saturations for equation (18) fitted to the 40 water retention
data sets was 0.999.

[17] The accuracy of the predictions of relative permeabil-
ity by the two models was evaluated by the root-mean-square
error (RMSE). We also computed the logarithmic RMSE
(LRMSE) on the basis of the logarithms of the measured
and predicted krw values to quantify the performance of both
models at low relative permeabilities. Paired t tests were used
to evaluate if the differences in RMSE or LRMSE values
between the two models were statistically significant at
p < 0.05 (5% level of significance).

4. Results

[18] Figure 2 shows the differences in the performance of
the discrete PCC (red circles) and the VG-M (blue squares)
models for the pooled 40 data sets. A 1:1 line shows the
optimal performance. The discrete PCC predictions were
generally closer to this line. The mean RMSE for the discrete
PCC model was 0.128, while for the VG-M model, the mean
RMSE was 0.140. The mean LRMSE for the discrete PCC
model was 0.813, while for the VG-M model it was 1.555.
Paired t tests for the 40 data sets showed that mean RMSEs of
the two models were not significantly different, while
the mean LRMSEs were significantly different at p < 0.05.
The mean LMRSE may be a better measure of fit given the
orders of magnitude range of relative permeability values.
These results indicate that overall, the discrete PCC method
(equation (15)) predicted the measured data better than the
VG-M (equation (19)) at p < 0.05.
[19] We also present individual comparisons for the five

data sets collected from the literature (Figures 3–7). The data
sets presented within this manuscript include all that have

Table 1. Estimates of Model Parameters for the VG Modela

Soil Reference Sr

a
(cm�1) n R2

Yolo light clay Moore [1939] 0.430 0.025 1.776 0.998
Guelph loam Elrick and Bowman [1964] and van Genuchten [1980] 0.414 0.013 1.946 0.994
Superstition sand Richards [1953] 0.287 0.028 5.100 0.999
Berea sandstone Brooks and Corey [1964] 0.328 0.019 8.928 0.996
Hygiene sandstone Brooks and Corey [1964] and van Genuchten [1980] 0.615 0.016 10.64 0.995

aModel parameters are a, n, and Sr. Fitted to measured water retention for five published paired data sets assuming m = 1 � 1/n.

Figure 7. Discrete PCC and VG-M relative permeability predictions for Hygiene sandstone.
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been tested; no results were screened out. Table 1 presents
the estimated parameters of the VG function fitted to the
water retention data. For the discrete PCCmodel, the RMSEs
ranged between 0.039 and 0.148 with a mean of 0.090. In
contrast, the RMSEs from the VG-M model ranged between
0.113 and 0.271, with a mean of 0.179. The LRMSEs for the
discrete PCC model ranged between 0.227 and 0.489 with a
mean of 0.401, while the VG-M LRMSE values ranged
between 0.820 and 2.173 with a mean of 1.501. The discrete
PCC predictions resulted in smaller RMSE and LRMSE
values in every case. Generally, the VG-M model under-
predicted the relative permeabilities. Paired t test showed that
the discrete PCC mean RMSE and mean LRMSE were
significantly smaller than the VG-M model for these five
soils (p < 0.05).

5. Discussion and Conclusions

[20] We combined the probability of drainage concept
and the PCC approach introduced by Cihan et al. [2007]
and Cihan et al. [2009], respectively, to derive the relative
permeability function for monotonic drainage of random
mass fractal porous media, i.e., the discrete PCC model. The
discrete PCC model allows estimation of the relative per-
meability directly from measured water retention data and
does not require curve fitting.
[21] The performance of the discrete PCC was tested on

40 data sets and compared with the VG-M model. Results
indicate that overall, the discrete PCCmethod (equation (15))
predicted the relative permeability significantly better than
the VG-M method. It should be noted that some data sets
within the UNSODA database appear to be questionable. For
instance, the relative permeability of some clay soils de-
creased rapidly with a small increase in suction. This might
indicate the presence of macropores or fractures resulting in
considerable momentum losses thereby flawing the assump-
tions behind Darcy’s law and capillary equilibrium based
on the Young-Laplace equation. In these cases, both models
resulted in inadequate predictions of relative permeability.
[22] We also analyzed individual predictions of the mod-

els for five soils used by many researchers in previous
publications on this subject. The VG-M model generally
underpredicted the measured data for all of the five soils.
In contrast, the discrete PCC model predicted the mea-
sured data reasonably well except for overpredicting krw at
high suctions for the Berea and Hygiene sandstones (see
Figures 6 and 7).
[23] The discrete PCC relative permeability function can

be used within numerical algorithms to solve the partial
differential equations governing unsaturated flow. However,
some sort of interpolation scheme is needed to compute krw
for suctions not included in the experimental water retention
data set. The present model is restricted to monotonic drain-
age from saturation. There is no theoretical reason why it
cannot be adapted to wetting and thereby extended to
incorporate hysteresis. However, limited relative permeabil-
ity data are available for model testing in the wetting case.
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