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[11 Disordered systems are known to induce anomalous diffusion. This phenomenon may
be important for environmental applications such as contaminant transport and nutrient
availability. However, few studies have investigated anomalous diffusion in this context. In
particular, the relationship between pore space geometry and anomalous diffusion is not
well understood. We report on numerical simulations of solute diffusion within the
water-filled pore spaces of two-dimensional geometrical models of heterogeneous porous
media. Euclidean and mass, pore, and pore-solid prefractal lattices were used to generate
random pore networks with varying porosity (¢) and lacunarity (L). The objectives were
to investigate the effects of ¢ and L on the solute random walk dimension (d,,) and to
identify which of these models best represents a natural porous medium. Solute diffusion
was simulated using a stochastic cellular automaton based on the “myopic ant”
algorithm. Estimates of d,, > 2 occurred with increasing frequency as ¢ — 0, indicating
scale dependency in the standard diffusion coefficient at low porosities. The relationship
between d,, and ¢ for the mass and pore-solid prefractal lattices was the closest to that for
natural 2-D systems (i.e., soil thin sections). The presence of large, interconnected pore
spaces (L — 1) at low porosities reduced the intensity of anomalous diffusion (d,, — 2).

A power law relationship based on the product of d,, and L explained >96% of the
total variation in ¢ regardless of the type of lattice considered. The potential predictive
capability of this approach for natural porous media deserves further investigation.

Citation: Kim, J.-W., E. Perfect, and H. Choi (2007), Anomalous diffusion in two-dimensional Euclidean and prefractal geometrical
models of heterogeneous porous media, Water Resour. Res., 43, W01405, doi:10.1029/2006WR004951.

1. Introduction

[2] Natural porous media that exhibit significant physical
heterogeneities include marine sediments, rocks, saprolite,
and soils. In many cases the pore spaces within these Earth
materials are completely filled with water. Understanding
the diffusion of solutes under saturated conditions is
important in environmental applications such as predicting
the fate and transport of contaminants, and nutrient avail-
ability to plants and microorganisms [Grathwohl, 1998;
Tinker and Nye, 2000].

[3] Diffusion of individual molecules in free space is
usually described by the Einstein relation [Einstein, 1905], i.e.

<r2(t)> o t (1)

where (r*(7)) is the mean squared displacement at time, .
The constant of proportionality in this linear relationship
defines the diffusion coefficient, i.e.

(2)
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[4] A large body of theoretical evidence now exists
demonstrating that diffusion in model disordered systems
deviates from Einstein’s classical description and becomes
“anomalous” [Ben-Avraham and Havlin, 2000]. Examples
of such systems include the sample spanning cluster in site
percolation models, and the iterative phase in fractal
lattices. For these cases, (+*(f)) becomes a nonlinear
function of ¢ [Given and Mandelbrot, 1983; Ben-Avraham
and Havlin, 2000]:

(F(t)) oc tlh (1< t,) (3a)

POy A (t>1) (3b)

where d is the dimensionality of the system under
consideration, d,, is the fractal dimension corresponding to
the trail left by a diffusing molecule, A is the asymptotic
value of (+(f)), and ¢, is the critical time at which ((z))
reaches A\. As a result, for all times less than the critical
time, the diffusion coefficient is no longer a constant, but
depends upon the time as:

D(t) = Dot~ (1 < 1,) (4)

A variety of mathematical techniques, including fractional
calculus, are available for incorporating D() into a diffusive
flux equation analogous to Fick’s law [Metzler and Klafter,
2000; Sokolov et al., 2002].
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Figure 1.

Two-dimensional (a) Euclidean, (b) pore prefractal, (c) mass prefractal, and (d) pore-solid

prefractal models of heterogeneous porous media constructed with 10° cells and porosities of ~0.6 (white

cells, pores; black cells, solids).

[s] While anomalous diffusion in synthetic materials such
as catalysts, emulsions, and sorbents is widely accepted
[e.g., Knackstedt et al., 1995; Sheintuch, 2001; Malek and
Coppens, 2003], only a few studies have investigated this
phenomenon in natural porous media. Anderson et al.
[1996, 2000] performed numerical random walk simula-
tions in digitized images of thin sections from a wide
variety of soil types. Their results indicate that d,, for the
pore phase ranges from 2.2 to 2.7. Ewing and Horton
[2003] studied finite size scaling and edge effects with
Monte Carlo simulations in random cubic lattices as models
of low-connectivity soils. They showed how the diffusion
coefficient deviates from a constant value as porosity
decreases. Despite these two reports, the applicability of
equation (3) to natural porous media remains to be fully
established.

[6] Geometrical models are able to collapse detailed
information about complex structures into just a few
parameters. By manipulating these parameters in a system-
atic way, model porous media can be synthesized with a
wide range of heterogeneities. Numerical simulations per-
formed within such structures can help identify the respec-
tive contributions of different physical properties to
anomalous diffusion.

[7] Many different geometrical models have been used to
represent natural porous media. A commonly used
approach is to randomly assign pores and solids in a
Euclidean cubic lattice or site percolation model [Berkowitz
and Ewing, 1998; Dullien, 1992; Sahimi, 1995]. Although
such models are made up of uniformly sized pore and solid
cells (Figure la), the pore clusters that occur as the
percolation threshold is approached exhibit fractal charac-
teristics. Numerous studies have established the anomalous
nature of diffusion in such clusters [Brandt, 1975; de
Gennes, 1976; Orbach, 1986]. For two-dimensional
Euclidean lattices, the value of d,, for an infinite pore
cluster at the percolation threshold is ~2.9 [Ben-Avraham
and Havlin, 2000].

[s] A major disadvantage of Euclidean lattices as models
of natural porous media is that all the pore and solid cells
are the same size. Furthermore, heterogeneity is only
manifested over a narrow range of porosities close to the
percolation threshold. To overcome these limitations
various spatially correlated Euclidean models have been
proposed [Duckers, 1978; Nauman, 1993; Moran and
McBratney, 1997; Odagaki et al., 1999]. According to
Karayiannis et al. [2001] spatial correlations strongly
influence the diffusion process at short times, prolonging
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Table 1. Published Estimates of the Random Walk Fractal
Dimension, d,,, From Numerical Simulations of Diffusion in Pore
Fractal Sierpinski Carpets®

d,

Reference Minimum Maximum
Kim et al. [1993] 2.07 (1.99) 2.20 (1.72)
Aarao Reis [1995] 2.03 (1.97) 2.12 (1.86)
Aardo Reis [1996a] 2.10 (1.90) 2.49 (1.66)
Aardo Reis [1996b] 2.13 (1.89) 2.25 (1.72)
Dasgupta et al. [1999] 2.19 (1.75) 2.75 (1.75)
Seeger et al. [2001] 2.52 (1.66) 2.71 (1.66)
Tarafdar et al. [2001] 2.45 (1.50) 2.50 (1.50)
Franz et al. [2001] 2.28 (1.75) 2.55 (1.75)
Anh et al. [2005] 2.13 (1.77) 2.60 (1.77)

“Fractal dimension, D of the associated Sierpinski carpet is given in
parentheses.

the duration of the anomalous regime. While spatially
correlated lattices can provide a better representation of
heterogeneity, the need for additional empirical parameters
in their construction is a potential drawback.

[0] Fractal geometry deals with the scaling of heteroge-
neous materials. This modeling approach is particularly
attractive since information about complexity at different
scales is captured in parameters such as the fractal dimension,
Dy, and lacunarity, L [Mandelbrot, 1982]. Fractal (covering
an infinite range of scales) and prefractal (covering a finite
range of scales) geometries have been used by many
researchers to model natural porous media such as soils
and reservoir rocks [Meakin, 1991; Garrison et al., 1992;
Adler and Thovert, 1993; Rieu and Perrier, 1998]. These
models have been shown to yield theoretical functions for
hydraulic properties that closely match experimental data
[Byler and Wheatcraft, 1990; Toledo et al., 1990; Rieu and
Sposito, 1991a, 1991b; Bird et al., 2000; Perfect, 2005].
Furthermore, it has long been established that diffusion on
fractals is anomalous and can be described by equation
(3) [Gefen et al., 1981; Given and Mandelbrot, 1983;
Rammal and Toulouse, 1983].

[10] Fractal porous media can be created by specifying
simple rules for interactions between neighboring cells in a
lattice (cellular automaton, CA) or by the repeated appli-
cation of a generator pattern onto itself (iterated function
system, IFS). Crawford et al. [1997] used the CA approach
to simulate aggregated soil structures. Diffusion of solutes
within such structures may be normal or anomalous
depending upon the interaction rules specified [Botelho
and Aardo Reis, 1998]. Since CA models are inherently
parameterless, however, it is difficult to relate their
diffusive behavior to physical properties. In this context,
IFS models are preferable.

[11] The focus here is on a special class of two-dimensional
IFS fractals known as Sierpinski carpets [Mandelbrot,
1982]. A Sierpinski carpet is a pore fractal when the
iterative phase is composed solely of voids, a mass fractal
when it is composed solely of solids, and a pore-solid
fractal when it is composed of both voids and solids
[Perrier et al., 1999]. Pore prefractals are made up of
different-sized solid particles separated by small uniformly
sized pores (Figure 1b). Conversely, mass prefractals
consist of different-sized pores and small uniformly sized
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solid particles (Figure 1c). Pore-solid prefractals contain
both solid particle and pore size distributions, and thus are
the most physically heterogeneous (Figure 1d). All three
types of fractal have been invoked as models of natural
porous media [Katz and Thompson, 1985; Garrison et al.,
1992; Perrier et al., 1999].

[12] Estimates of d,, obtained from numerical simulations
of diffusion in pore fractal Sierpinski carpets range from
2.0 to 2.7 (Table 1). To date, no fundamental relationship
has been established between d,, and the carpet fractal
dimension (Dj). The magnitude of d,, is sensitive to the
lattice size [Aardo Reis, 1995, 1996a, 1996b], the random
walk algorithm [Seeger et al., 2001], and boundary con-
ditions [Aardo Reis, 1996a; Seeger et al., 2001]. When
these factors are kept constant, d,, generally increases as Dy
(and consequently the porosity) decreases [Aardo Reis,
1995]. However, for any given carpet dimension, d,, can
exhibit significant variation due to differences in pore
arrangement and connectivity as quantified by L [Kim et
al., 1993; Dasgupta et al., 1999].

[13] Despite the large amount of information available on
diffusion in pore prefractal Sierpinski carpets (Table 1), we
were unable to locate any published studies dealing with
random walk simulations in the void phase of mass and
pore-solid Sierpinski carpet fractals. These models are
especially relevant to heterogeneous natural porous media
since they contain a wide range of pore sizes. The influence
of this pore size distribution on their diffusive behavior
remains to be elucidated.

[14] This paper reports on numerical simulations of
diffusion performed in two-dimensional Euclidean and
prefractal lattices, as models of natural porous media. Three
classes of prefractals were investigated: pore, mass, and
pore-solid Sierpinski carpets. The main objectives were to
investigate the effects of varying porosity and lacunarity on
the extent of anomalous diffusion in each simulated porous
medium, and to relate the results to those obtained by
Anderson et al. [1996] for soil thin sections. The goal was
to identify the best geometrical model for simulating solute
diffusion in saturated soil and reservoir rocks.

2. Methods
2.1.

[15] Four different types of two-dimensional model
porous media (i.e., Euclidean, pore prefractal, mass pre-
fractal and pore-solid prefractal) were generated (Figure 1).
The lattice size was always set at 1000 by 1000 cells in
order to compare our results with those from the soil thin
section images of Anderson et al. [1996] which were 1000
by 1000 pixels.

[16] The Euclidean porous media were generated by the
random allocation of pore cells within a solid initiator
lattice based on the predetermined porosity.

[17] The prefractal porous media were generated randomly
using the homogeneous algorithm [Sukop et al., 2002]. The
initiators were pore, solid, and pore-solid lattices in the case
of the pore, mass and pore-solid prefractal porous media,
respectively. The generators were defined in terms of a
constant length subdivision factor (b) and variable prede-
termined probabilities of exclusion from the generator
(Pex) (Table 2). Following subdivision of the initiator and

Simulated Porous Media
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Table 2. Parameters Used to Generate the Different Prefractal
Porous Media With Porosities Ranging From ~0.1 to ~0.6 and a
Lattice Size of 1000 x 1000 Cells

Porous Medium i b Pex 10} Dy
Pore prefractal 3 10 0.54 0.0973 1.6628
Pore prefractal 3 10 0.42 0.1951 1.7634
Pore prefractal 3 10 0.33 0.3008 1.8261
Pore prefractal 3 10 0.26 0.4052 1.8692
Pore prefractal 3 10 0.21 0.4930 1.8976
Pore prefractal 3 10 0.16 0.5927 1.9243
Mass prefractal 3 10 0.03 0.0873 1.9868
Mass prefractal 3 10 0.07 0.1956 1.9685
Mass prefractal 3 10 0.11 0.2950 1.9494
Mass prefractal 3 10 0.16 0.4073 1.9243
Mass prefractal 3 10 0.21 0.5070 1.8976
Mass prefractal 3 10 0.26 0.5948 1.8692
Pore-solid prefractal® 3 10 0.06 0.1050 1.6990
Pore-solid prefractal® 3 10 0.11 0.1925 1.6990
Pore-solid prefractal® 3 10 0.17 0.2975 1.6990
Pore-solid prefractal® 3 10 0.23 0.4025 1.6990
Pore-solid prefractal® 3 10 0.29 0.5075 1.6990
Pore-solid prefractal® 3 10 0.34 0.5950 1.6990

“Here pge, = 0.50.

exclusion of cells, the generators were applied onto them-
selves in a finite number of iterations (i) (Table 2). In the
case of the pore-solid prefractal lattices, only a portion of
the remaining generator cells (pg.,) was included in the
iterative process [Perrier et al., 1999] (Table 2).

2.2. Porosity

[18] The porosity (¢) of each porous medium was varied
from ~0.1 to ~0.6 in increments of ~0.1 (Table 2). The
predetermined ¢ controlled the number of pore cells
removed in the Euclidean porous media. The ¢ of each
prefractal porous medium was determined by manipulating
i, b, Pexs Pgen» and the initiator type in the homogeneous
algorithm based on the following relations [Perrier et al.,
1999; Sukop et al., 2002]:

P =3 (5a)
Pore prefractal
¢=(1-pa) (5b)
Mass prefractal
¢=1-(1-pa) (S¢)
Pore-solid prefractal
o= (1= i) (54)

where n is the number of cells removed in the generator. In
order to maintain a constant lattice size comparable to that
of Anderson et al.’s [1996] soil thin section images, i and b
were fixed at 3 and 10, respectively, and only p,, was varied
to control the porosities. In the case of the pore-solid
prefractal porous media, p,., Was set at a constant value of
0.5 so that variations in porosity were determined
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exclusively by p,. (Table 2). Five realizations of each type
of simulated porous medium were generated at six different
porosity levels giving a total of 120 lattices (i.e., 4 models x
6 porosities x 5 replications). Five replications of a 1000 by
1000 free space lattice (i.e., ¢ = 1) were also included for
comparative purposes.

2.3. Pore and Pore Cluster Size Distributions

[19] Both individual pores and pore clusters were
accounted for in this study. A pore means a pore cell of a
given size that does not include any connected pores. A
pore cluster was considered a set of connected pores
identified using the Hoshen-Kopelman algorithm [Hoshen
and Kopelman, 1976]. The Hoshen-Kopelman algorithm
was also used to find the largest pore cluster within each
realization.

[20] Pore and pore cluster sizes were quantified in terms
of their area. The total area of each 1000 by 1000 lattice
was set as unity for comparison with the porosity. Thus, for
the Euclidean lattices, the pore size was 1/10°. For the
prefractal lattices, pore sizes were determined using the
relationship 1/b% (ie., 1/10%, 1/10*, and 1/10° forj=1toi,
respectively). Pore cluster size was calculated as the
summed area of the connected pore cells.

2.4. Lacunarity

[21] Generally, knowledge of the porosity is not sufficient
to characterize the morphological properties of a porous
medium. The spatial distribution of pores can be totally
different even though the porosity is constant; for instance,
the pores could be either clustered or dispersed. Lacunarity
(L) provides a quantitative measure of the spatial distribu-
tion of pores within a porous medium [Pendelton et al.,
2005]. In this study, L was calculated based on the pores
and pore clusters within each lattice using the method
suggested by Allain and Cloitre [1991]:

>0, r)

S E—
(;pQ(n r))

where p is the number of pore cells in a gliding window
whose size (area) is 7, and Q(p, r) is the probability function
of the pore distribution. Equation (6) corresponds to the
ratio between the second moment and the square of the first
moment of the pore space distribution. Consequently, the
greater the degree of pore cell coalescence, the higher the
value of L.

[22] The L of a lattice has upper and lower bounding
values depending upon the size of the gliding window
selected: L — 1 as r approaches the area of the entire
lattice, while L — 1/¢ as r approaches the cell or pixel area.
For prefractal lattices, differences in L due to pore cluster-
ing appear to be most pronounced when r = b D
[Turcotte, 1997]. Thus, in this study the area of the gliding
window was set at 1/10°.

2.5. Solute Diffusion
[23] Solute diffusion was simulated with multiple ran-
dom walkers or particles using the myopic ant algorithm

[Ben-Avraham and Havlin, 2000]. In order to quantify only
the effects of pore space geometry on solute diffusion, the

L=
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Figure 2. Sums of pore clusters with sizes less than 10>
(white), between 10~> and 102 (shaded), and more than
1072 (stippled) for each porosity level in each porous
medium (E, Euclidean; PF, pore prefractal; MF, mass
prefractal; PSF, pore-solid prefractal). Vertical error bars
indicate £95% CI for each pore cluster size class.

cloud of solute particles was considered to be an inert tracer
(i.e., no interactions between solute particles or with the
solid phase). One hundred solute particles were initially
distributed within the pore phase of each simulated porous
medium. Because the particles were randomly inserted,
some of them ended up being trapped in isolated pores.
Since the particles do not “see” one another it was possible
for more than one particle to occupy the same cell at the
same time. Additional simulations in Euclidean porous
media at two porosities above and below the percolation
threshold (¢ = 0.6 and 0.4, respectively) using 1000 solute
particles were consistent with those obtained using just 100
solute particles (data not presented).

[24] Incremental particle movements were restricted to
the von Neumann neighborhood, which comprises the four
closest cells. An equal probability of movement to each
neighboring pore cell was employed. If one or more
neighboring cells were solids, then the probability was
reequalized for the remaining pore neighbors. If all of the
neighbors were solids, the probability of the solute particle
movement was zero. The total diffusion simulation time in
each porous medium was set at 1000 incremental steps.
This value was chosen because (rz(t)) became steady after
~1000 time steps, which is consistent with the results of
Ben-Avraham and Havlin [2000]. There were no differences
in the simulations when 3000 times steps was used instead of
1000 time steps in Euclidean porous media at ¢ = 0.6 and 0.4
(data not presented).

[25] At each time step (7), the (+*(£)) was computed for
the 100 solutes, synchronously. In order to represent an
infinite system, periodic boundary conditions were adopted
for all four edges of the model domain. This means that
when a solute particle exited from one side of the lattice,
the particle was reintroduced on the opposite side of the
lattice at the same time. We also simulated anomalous
diffusion in 256 x 256 sized Euclidean lattices at ¢ =
0.6 and 0.4 for comparison. The results (not shown)
indicated there were no significant differences due to the
lattice size. This suggests that the periodic boundary
condition was effective in reducing the impact of finite
size effects.
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[26] In order to quantify solute diffusion in the simulated
porous media, equation (3) was fitted to the mean squared
displacement versus time data from the random walks with
d set at 2. The d,, and )\ parameters were estimated by
segmented nonlinear regression analysis using the SAS
statistical software program [SAS Institute Inc., 1999], with
the critical time separating the two diffusive modes defined
by:

fo = X2 (7)

Estimates of z. > 1000 occurred in 29%, 40%, 43%, and
50% of the fits for the Euclidean, pore prefractal, mass
prefractal, and pore-solid prefractal porous media, respec-
tively. In these cases the data were refitted using only
equation (3a). With the exception of the Euclidean lattices
the occurrence of #. > 1000 appeared to be independent of
the porosity. For the former, the percentage of cases in
which #. > 1000 decreased systematically with decreasing
porosity.

[27] While convergence was always achieved according
to the SAS software default criterion, equation (3) did not
always provide a good fit to the data, particularly in the
case of the Euclidean and pore prefractal lattices with very
low porosities. Altogether 22% of the 125 fits were
excluded from further analysis because their coefficients
of determination (R?) between the observed and predicted
values were less than 0.9. Mean values and associated 95%
confidence intervals (CI) for d,, were computed based on
the remaining fits for the five different realizations at each
porosity in each type of simulated porous medium.

3. Results and Discussion
3.1.

[28] The main morphological differences between the
four types of simulated porous media (Figure 1) can be
attributed to their pore and pore cluster size distributions. In
the Euclidean and pore prefractal porous media only the
smallest lattice cells (1/10°) were present as pores. As a
result their pore size distributions were uniform. In the mass
and pore-solid prefractal porous media, however, three
different pore sizes were present, corresponding to the
iteration level in the relationship between b and i.

[29] Because of the definition of pore size, and the fact
that the homogeneous algorithm was used to construct the
prefractal porous media, there was no variation in the pore
size distributions among the different replications. In
contrast, the pore cluster size distributions showed small
variations between the different realizations as indicated by
the 95% CI in Figure 2. The pore cluster size distributions
were highly dependent upon both the type of porous
medium and the porosity (Figure 2). In the Euclidean and
pore prefractal porous media, especially, the pore cluster
size distributions changed dramatically as the porosity
increased. This observation is consistent with percolation
threshold theory which, in the case of Euclidean porous
media, predicts the occurrence of a sample spanning pore
cluster at ¢ = 0.5927. .. [Ben-Avraham and Havlin, 2000].
For the mass and pore-solid prefractal porous media the
relative proportions of pore clusters in each size class did
not change as much as the porosity increased (Figure 2).

Pore and Pore Cluster Size Distributions
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Figure 3. Lacunarity as a function of porosity for each
porous medium (E, Euclidean; PF, pore prefractal; MF, mass
prefractal; PSF, pore-solid prefractal). Note that +95% CI
were smaller than the data points.

However, the largest pore clusters always occupied a greater
fraction of the total pore space than the largest pores.

3.2. Lacunarity

[30] The effects of porosity and type of porous medium
on the L parameter were very clear since there was little
variation between the replications as evidenced by the
negligibly small 95% CI in Figure 3. The effect of type
of porous medium on L was strongly dependent on the
porosity. At low porosities, there were highly significant
differences in L between the different porous media, where-
as at high porosities the differences were less pronounced.
This is to be expected since fewer and fewer solid cells
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occur as ¢ — 1, so that there is insufficient information for
equation (6) to quantify pore coalescence. This occurs
regardless of the nature of the pore cell size distribution. In
contrast, at low porosities many solid cells are present so that
pore cell clusters are easily distinguished from dispersed/
isolated pore cells.

[31] The influence of a solid (particle) cell size distribu-
tion versus a uniform particle cell size can be seen by
comparing the L versus ¢ functions for the pore prefractal
and Euclidean porous media (both systems had a uniform
pore cell size). Similarly, the influence of a pore cell size
distribution versus a uniform pore cell size can be seen by
contrasting the L versus ¢ functions for the mass prefractal
and Euclidean porous media (both systems had a uniform
particle size). This comparison (Figure 3) indicates that at
low porosities L is much more sensitive to the presence of
large pores than large particles. The pore-solid prefractal
porous media contained both pore and particle cell size
distributions and, as a result, produced the strongest
relationship between L and ¢ (Figure 3). Apparently, the
presence of large particles at low porosities enforces addi-
tional pore clustering as compared to that associated with
just a pore cell size distribution (i.e., the mass prefractal
model).

3.3. Mean Squared Displacement

[32] The mean squared displacement versus time functions
varied with both the type of porous medium and the
porosity (Figure 4). Generally, (#°(¢)) has a linear relation-
ship with time in open space. However, when particle move-
ment is constrained by the solid phase, diffusion becomes
increasingly anomalous [Ben-Avraham and Havlin, 2000].

{A) Mass prefractal porous media (B} porosity = 0.5
slope = 1 slope = 1
1000 - _ & (r=reee=+ ) porosity = 1.0 (modeled) & (reeere== ) PSF (modeled)
A L ) porosity = 0.6 (modeled) T (seerene ) MF (modeled)
e O (=++=-) porosity = 0.4 (modeled) O (=++=+) PF(modeled)
A 0O (=== porosity = 0.2 (modeled) 0 (=== E (modeled)
=
S
Nl-..
v 800 +
i
c
17}
:
& 600 +
[=%
8
o
3
P 400 +
3
o
2]
c
S i
= 200 + -
0 T . T | | . T T |
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (f)

Figure 4. Mean squared displacement versus time functions for inert solute particles (a) in mass
prefractal porous media with porosities of 0.2, 0.4, 0.6 and 1.0 and (b) in different porous media (E,
Euclidean; PF, pore prefractal; MF, mass prefractal; PSF, pore-solid prefractal) where porosity = 0.5
(symbols, experimental results; lines, modeled results).
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Figure 5. Random walk dimension as a function of porosity in each porous medium (E, Euclidean; PF,
pore prefractal; MF, mass prefractal; PSF, pore-solid prefractal porous media) as compared to Anderson et
al.’s [1996] results for soil thin sections (circled crosses). The shaded regions indicate the £95% CI.

Figure 4a shows the mean squared displacement versus time
functions for open space and the mass prefractal porous
media at selected porosities. As expected, the (r%(f)) versus
t relations were approximately linear when ¢ = 1. Regard-
less of the porous medium considered, the functions became
increasingly curvilinear and asymptotic at earlier times
(i.e., more anomalous) as porosity decreased. This is
because the pore clusters, in which solute diffusion occurs,
are smaller and more convoluted at low porosity, so the
space available for solute movements is limited.

[33] For any given porosity, the type of porous medium
also affected the degree of anomalous behavior (Figure 4b).
The Euclidean porous media always produced the most
anomalous diffusion, followed by the pore prefractal porous
media. In contrast, the mass and pore-solid prefractal
porous media, which had one or more large pores present,
generally yielded more linear and less asymptotic mean
squared displacement versus time functions.

3.4. Effects of Porous Medium and Porosity on
Random Walk Dimension

[34] Our random walk algorithm was verified by
performing replicated solute diffusion simulations in free
space (i.e., ¢ = 1). The mean value of the resulting d,,
estimates (2.01 £ 0.02) was not significantly different from
the theoretical value of two at p < 0.05.

[35] For the simulated porous media, estimates of d,,
always increased as the porosity decreased (Figure 5). The
Euclidean and pore prefractal porous media exhibited very
large increases in d,, with decreasing porosity because of
the dramatic changes in their pore cluster size distributions.
Compared to Anderson et al.’s [1996] soil thin section data,
the d,, values for the Euclidean and pore prefractal porous
media were overestimated, especially at low porosities. In
contrast, Figure 5 indicates that the mass and pore-solid
prefractal porous media, both which had hierarchical pore
cell and pore cluster size distributions, displayed much less

variation in d,,. This result suggests that mass and pore-
solid prefractals can be regarded as the closest geometrical
model to real soil among the four simulated porous media
investigated.

[36] Although the mass prefractals gave the best overall
match with the soil thin section data, it is not possible to
conclude that this model was better than the pore-solid
prefractal model. This is because only one value of p,,, was
used in the construction of the pore-solid prefractals, and
it is possible that a closer fit to the soil thin section data
might be obtained by varying this parameter. Additional
simulations in pore-solid prefractal porous media are
needed to more fully elucidate the nature of the relationship
between pg., and d,,.

[37] The random walkers were free to move throughout
the pore clusters in each porous medium. However, their
mean squared displacements were highly restricted in the
smallest pore clusters, as demonstrated by the high values
of d,, and small pore cluster sizes at low porosities in the
Euclidean and pore prefractal porous media. On the other
hand, the mass and pore-solid prefractal porous media
always had some large pores present even at low porosities,
resulting in relatively low values of d,. These results
suggest that both pore cell and pore cluster size are
important factors controlling the extent of anomalous
diffusion within water-saturated porous media.

[38] For the Euclidean porous media with a porosity of
0.6, the proportions of large pore clusters were similar to, or
higher than, the proportions present in the mass and pore-
solid prefractal porous media. In addition, the lacunarity
values were similar when porosity is about 0.6. Thus one
might have expected similar, or lower, d,, values. However,
the d,, values for the Euclidean porous media were higher
than those for the mass and pore-solid prefractal porous
media. Considering pore size distribution, the Euclidean
porous media had uniformly small pore sizes even at high
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Figure 6. Largest pore clusters in (a) Euclidean
porosities of ~0.6 (white, pore; black, solid; purple,

porosity. However, the pore cluster sizes were much larger
than those in the other media (Figure 2). In other words,
although the pore cluster size was very large, its morphology
was more disordered, with less dense pore cells and more
dangling ends. In contrast, the mass and pore-solid
prefractals had pore clusters that included large pore cells
(macropores) which were very similar to open space. These
differences in pore cluster morphology are illustrated in
Figure 6.

3.5.

[39] Comparing our results from Figures 3 and 5, it can
be seen that the relationship between lacunarity and the
random walk dimension depends upon the porosity level
considered. At high ¢ there was no clear relationship
between d,, and L. In contrast, at low ¢, the d,, increased

Integrated Model for Anomalous Diffusion

17 4

12

[ ]
| |
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v

and (b) pore-solid prefractal porous media with
largest pore cluster).

as the L decreased. This relationship is as expected, since a
high lacunarity value corresponds to greater degree of pore
coalescence, which should diminish the overall extent of
anomalous diffusion.

[40] The interaction between L and ¢ indicates that
anomalous diffusion is significantly influenced by, not only
porosity, but also the type of porous medium. When these
parameters were multiplied together, however, the porous
medium effect was removed (Figure 7). The combined
variation of L and d,, with porosity can be explained by
the following generic power law relationship:

dyxL=f(d)=ax ¢’ (8)
From physical considerations, both L and d,, are expected to
go to infinity as porosity goes to zero. In addition, Z should

PSF
MF
PF
E

— d,xL=2x¢"

B=08245 R*=0.9689 p<0.0001

T T T T
0.0 0.1 0.2

0.3 ;
Porosity

0.4 0.5 0.6 0.7

Figure 7. Mean values (£95% CI) of d,, x L for each porous medium (E, Euclidean; PF, pore prefractal;
MEF, mass prefractal; PSF, pore-solid prefractal) as a function of porosity. The best fit relationship based
on equation (8) with o = 2 is shown as a solid line along with the calculated parameter and coefficient of

determination (R?).
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go to one and d,, to two as the porosity approaches unity
(see Figures 3 and 5). On the basis of the above boundary
conditions « was fixed as a constant of two and 3 was
estimated from the data using nonlinear regression in SAS
(R* = 0.9689, p < 0.0001). Given these results, equation (8)
can be rewritten as

dyx L=2x ¢ "% )

The physical significance and potential universality of the
power exponent in equation (9) will require further
investigation in future studies.

[41] Equation (9) suggests that a combination of d,,,
which is a characteristic of anomalous diffusion, and L,
which is a morphological property of porous media, can
be estimated by porosity no matter which type of porous
medium is considered. Further research with digitized
images of soil and rock thin sections is needed to test
the applicability of this relationship to natural porous
media (unfortunately, Anderson et al’s [1996] original
images were not available for analysis). Extension of the
current work to three dimensions would also be valuable.

4. Conclusions

[42] Anomalous diffusion was investigated in simulated
porous media. In order to realize the heterogeneous
geometry of natural porous media, three different prefractal
porous media (pore, mass, and pore-solid prefractals) were
employed and compared with random Euclidean porous
media. Differences in pore space geometry within the
porous media could be clearly discriminated based upon
the measured pore cell and pore cluster size distributions.
Lacunarity proved to be a powerful parameter for quanti-
fying these differences. Solute diffusion within the pore
spaces of the model porous media was simulated using the
myopic ant algorithm. The mean squared displacements of
the random walkers (solute particles) were influenced by the
pore and pore cluster size distributions, as well as by total
porosity. On the basis of our results, it can be concluded that
anomalous behavior increases with decreasing pore cell and
pore cluster size and uniformity, as well as with decreasing
porosity. Heterogeneous pore clusters which contain macro-
pores are similar in effect to open space and diminish the
overall extent of anomalous diffusion. Regardless of
the type of porous medium considered, a power law
relationship based on porosity explained >96% of the total
variation observed in the random walk dimension of the
solute particles multiplied by lacunarity. Comparing our
results to those from soil thin sections, suggests that mass
and pore-solid prefractal lattices can be regarded as the
most applicable geometrical models for simulating solute
diffusion in natural porous media.
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